Ta có :
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow2A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1\)
=> A < B
A = (3 + 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
2A = (3 - 1).(3 + 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
2A = (32 - 1).(32 + 1).(34 + 1).(38 + 1).(316 + 1)
2A = (34 - 1).(34 + 1).(38 + 1).(316 + 1)
2A = (38 - 1).(38 + 1).(316 + 1)
2A = (316 - 1).(316 + 1)
2A = 332 - 1 = B
=> A < B
A = ( 3 + 1 ) ( 32 + 1 ) ( 34 + 1) ( 38 + 1 ) ( 316 + 1 )
2A=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)=B
=>A<B