Ta có:
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}=\left(-125\right)^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}=\left(-128\right)^{13}\)
Vì \(\left(-125\right)^{13}>\left(-128\right)^{13}\) nên \(\left(-5\right)^{39}>\left(-2\right)^{91}\)
Ta có: 5^35 = (5^3)^(35/3) = 125^(35/3) ; 2^91 = (2^7)^13 = 128^13
mà 128^13 > 125^(35/3) [128 > 125 và 13 > 35/3]
Ta có:
539 = (53)13 = 12513
291 = (27)13 = 12813
Vì 12513 < 12813
=> 539 < 291
=> (-5)39 > (-2)91