Ta có: \(2004A=\dfrac{2004^{2004}+2004}{2004^{2004}+1}=1+\dfrac{2003}{2004^{2004}+1}\)
\(2004B=\dfrac{2004^{2003}+2004}{2004^{2003}+1}=1+\dfrac{2003}{2004^{2003}+1}\)
Vì \(\dfrac{2003}{2004^{2004}+1}< \dfrac{2003}{2004^{2003}+1}\Rightarrow1+\dfrac{2003}{2004^{2004}+1}< 1+\dfrac{2003}{2004^{2003}+1}\)
\(\Rightarrow2004A< 2004B\)
\(\Rightarrow A< B\)
Vậy A < B