\(\Leftrightarrow sin^{2015x}-2sin^{2017}x-cos^{2016}x+2cos^{2018}x-cos2x=0\)
\(\Leftrightarrow sin^{2015}x\left(1-2sin^2x\right)+cos^{2016}x\left(2cos^2x-1\right)-cos2x=0\)
\(\Leftrightarrow cos2x\left(sin^{2015}x+cos^{2016}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin^{2015}x+cos^{2016}x=1\end{matrix}\right.\)
\(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\left\{{}\begin{matrix}sin^{2015}x\le sin^2x\\cos^{2016}x\le cos^2x\end{matrix}\right.\) \(\Rightarrow sin^{2015}x+cos^{2016}x\le sin^2x+cos^2x=1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=\pm1\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=0\\sin=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(-10\le\frac{\pi}{4}+\frac{k\pi}{2}\le30\Rightarrow k=...\)
\(-10\le k\pi\le30\Rightarrow k=...\)
\(-10\le\frac{\pi}{2}+k2\pi\le30\Rightarrow k=...\)
Bạn tự giải nốt và kết luận