Cho mình hỏi hình thập nhị diện đều và hình nhị thập diện đều mỗi hình có bao nhiêu trục đối xứng vậy ?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD. Chứng minh rằng AM vuông góc với BP và tính thể tích của khối tứ diện CMNP
Cho hình chóp đều S.ABC, có đáy là tam giác đều cạnh bằng a. gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Biết mặt phẳng (AMN) vuông góc với mặt phẳng (SBC). Tính thể tích của khối chóp A.BCNM.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(\widehat{BAD}=120^o\). Biết \(SA\perp BD,SB\perp AD\) và (SBD) tạo với mặt phẳng (ABCD) góc \(60^o\). Lấy H đối xứng với C qua A.
a) Tính \(V_{S.ABCD}\)
b) Gọi các điểm M, N lần lượt thuộc các cạnh SC, SD sao cho \(SM=\dfrac{a\sqrt{43}}{4};SN=\dfrac{a\sqrt{39}}{6}\). Tính \(V_{AMND}\).
Cho hình chóp SABCD có đáy là hình vuông cạnh a, đường cao SA=2a. Gọi (P) là mặt phẳng qua A và vuông góc với SC. Tính diện tích của hình chóp cắt bởi mặt phẳng (P)
Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC
Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB=a, góc giữa 2 mặt phẳng (A'BC) và (ABC) bằng 60 độ. Gọi G là trọng tâm của tam giác A'BC.
Tính thể tích của khối lăng trụ đã cho và bán kính mặt cầu ngoại tiếp tứ diện GABC theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A. Mặt phẳng bên ABC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SA, BC