a) Ta có: \(\frac{15+5x^2-3x^3-9x}{5-3x}\)
\(=\frac{-3x^3+5x^2-9x+15}{5-3x}\)
\(=\frac{3x^3-5x^2+9x-15}{3x-5}\)
\(=\frac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}\)
\(=\frac{\left(3x-5\right)\left(x^2+3\right)}{3x-5}\)
\(=x^2+3\)
b) Ta có: \(\frac{x^4-2x^3-1+2x}{x^2-1}\)
\(=\frac{x^4-2x^3-1+2x}{x^2-1}\)
\(=\frac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=\frac{\left(x^2-1\right)\left(x^2+1-2x\right)}{x^2-1}\)
\(=x^2-2x+1=\left(x-1\right)^2\)