\(=\dfrac{\sqrt{5}-2-\sqrt{5}}{5+2\sqrt{5}}+\dfrac{1}{5}=\dfrac{-2}{5+2\sqrt{5}}+\dfrac{1}{5}\)
\(=\dfrac{-10+5+2\sqrt{5}}{5\left(5+2\sqrt{5}\right)}=\dfrac{-5+2\sqrt{5}}{5\left(5+2\sqrt{5}\right)}=\dfrac{-9+4\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{5}-2-\sqrt{5}}{5+2\sqrt{5}}+\dfrac{1}{5}=\dfrac{-2}{5+2\sqrt{5}}+\dfrac{1}{5}\)
\(=\dfrac{-10+5+2\sqrt{5}}{5\left(5+2\sqrt{5}\right)}=\dfrac{-5+2\sqrt{5}}{5\left(5+2\sqrt{5}\right)}=\dfrac{-9+4\sqrt{5}}{5}\)
Rút gọn biểu thức trên:
\(P=\left(\dfrac{x+3\sqrt{x}}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
Rút gọn \(\dfrac{1}{\sqrt{5}-1}-\dfrac{1}{\sqrt{5}+1}\)
Rút gọn các biểu thức sau :
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
b) \(0,2\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}\)
d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}\)
Rút gọn
A=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
B=\(\dfrac{5}{4+\sqrt{11}}+\dfrac{11-3\sqrt{11}}{\sqrt{11}-3}-\dfrac{4}{\sqrt{5}-1}+\sqrt{\left(\sqrt{5}-2\right)^2}\)
C=\(\dfrac{\sqrt{x}+1}{x\sqrt[]{x}+x+\sqrt{x}}:\dfrac{1}{x^2-\sqrt{x}}\) (với x>0; x#1)
D=\(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
Cho biểu thức P = \(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{2-\sqrt{x}}\) (với x>0; x\(\ne\)0)
a,Rút gọn biểu thức P và tìm x để P = \(\dfrac{-3}{5}\)
b,Tìm GTNN của biểu thức A=P . \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
rút gọn biểu thức :
a, \(\dfrac{1}{\sqrt{5}-2}-\dfrac{4}{3-\sqrt{5}}\)
b, \(\dfrac{4}{3-\sqrt{5}}-\dfrac{1}{\sqrt{5}-2}\)
Thực hiến phép tính :
a, \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}\)
b, \(\dfrac{2}{3\sqrt{2}-4}-\dfrac{2}{3\sqrt{2}+4}\)
c, \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)
d, \(\dfrac{3}{2\sqrt{2}-3\sqrt{3}}-\dfrac{3}{2\sqrt{2}+3\sqrt{3}}\)
e, \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
g, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
thực hiện phép tính:
a) \(\dfrac{\sqrt{5}-2}{5-2\sqrt{5}}-\dfrac{5+2\sqrt{5}}{2+\sqrt{5}}+\dfrac{1}{\sqrt{5}}\)
b) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Bài 1 : Thực hiện phép tính , rút gọn biểu thức
A = (\(\sqrt{5}\)-2)(\(\sqrt{5}\)+2)
B = (\(\sqrt{5}\) +\(\sqrt{3}\))(5-\(\sqrt{15}\))
C = (\(\sqrt{45}+\sqrt{63}\))(\(\sqrt{7}-\sqrt{5}\))
D = \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}\)
E = \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
F = \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
G = \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
H = \(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)
I = \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}-\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}\)
K = \(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
Cho biểu thức A=(\(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\)) : (\(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1x}\))
1.Tìm điều kiện xác định của biểu thức A.
2.Rút gọn A.
3.Tính giá trị biểu thức A khi x = \(\dfrac{1}{6-2\sqrt{5}}\).
4.Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
5.Tìm giá trị của x để biểu thức A bằng -3.
6.Tìm giá trị của x để biểu thức A nhỏ hơn -1.
7.Tìm giá trị của x để biểu thức A lớn hơn \(\dfrac{-2}{\sqrt{x}+1}\)