\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x-5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x-5\sqrt{x}-8}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
Cho: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, Rút gọn P
b, Tìm GTLN của P
Cho biểu thức:
\(K=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a,Tìm x để K có nghĩa
b,Rút gọn K
c,Tìm x khi \(K=\dfrac{1}{2}\)
rút gọn
a, \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}.\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
b,\(\left(\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}-\dfrac{3}{2-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)\
c,\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Cho biểu thức \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm điều kiện xác định của \(A\)
b) Tính giá trị của biểu thức \(A\) khi \(x=0\)
c) Rút gọn biểu thức \(A\)
d) Tìm \(x\) để \(A=-\dfrac{8}{5}\)
e) Tìm \(x\) để \(A=\sqrt{x}-\dfrac{18}{5}\)
f) Tìm điều kiện của \(x\) để \(A< 0\)
g) Tìm điều kiện của \(x\) để \(A>0\)
h) Tìm tập hợp các số tự nhiên \(x\) để \(A>0\)
k) Chứng minh rằng \(A>-5\)
m) Tìm điều kiện của \(x\) để\(A>-3\)
n*) Tìm giá trị lớn nhất của biểu thức \(A\)
p*) Xét biểu thức \(M=A-\dfrac{27}{\sqrt{x}+3}\). Tìm giá trị nhỏ nhất của biểu thức \(M\)
q*) Tìm các số tự nhiên \(x\) để \(A\) là số nguyên
Cho biểu thức A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt[]{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Rút gọc P
b, tìm x để P nhận giá trị nguyên
P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Rút gọn P
cho biểu thức P=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\) với x\(\ge\)0; x\(\ne\)9
1.tìm ĐKXĐ và rút gọn P
2.tính P khi x=7+2\(\sqrt{3}\)
3.tìm x để P<1
\(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}-15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\) rút gọn giùm ae
Rút gọn
a)\(\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}+1}}-\dfrac{\sqrt{2}}{\sqrt{\sqrt{2}-1}}\)
b)\(\sqrt{4-2\sqrt{3}}+\sqrt{\dfrac{2}{2-\sqrt{3}}}-\sqrt{27}\)
c)\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{3}{\sqrt{x}+3}vớix\ge_{ }0,x\ne1\)