\(=sinx-sinx-tanx.cotx\)
\(=-1\)
\(=sinx-sinx-tanx.cotx\)
\(=-1\)
a, cho tan a=3 . tính gt của biểu thức
\(\dfrac{\sin a\cos a+\cos^2a}{2\sin^2a-\cos^2a}\)
b, c/m đẳng thức
\(\cot\left(\dfrac{\pi}{2}-x\right)\cos\left(\dfrac{\pi}{2}+x\right)+\dfrac{\sin\left(\pi-x\right)\cot x}{1-\sin^2x}=\cos x\)
rút gọn biểu thức:
A= cosa.sin( b-c )+ cosb. sin(c-a) + cosc.sin( a-b)
B= \(sin^2x+cos\left(\frac{\pi}{3}-x\right).cos\left(\frac{\pi}{3}+x\right)\)
C=\(sin^2x+sin^2\left(\frac{2\pi}{3}+x\right)+sin^2\left(\frac{2\pi}{3}-x\right)\)
D=\(sin^2\left(\frac{\pi}{4}+x\right)-sin^2x-2sinx.sin\frac{\pi}{4}.cos\left(\frac{\pi}{4}+x\right)\)
rút gọn
cos(\(\frac{5\Pi}{2}\))-x-2sin(\(\frac{3\Pi}{2}\)-x)+cos(5\(\Pi\)-x)-sin(x-\(\frac{3\Pi}{2}\))
1) Cho sinα = \(\frac{3}{5}\) và \(\frac{\pi}{2}\)<α<π
a) cos α, tanα, cotα
b) sin(α - \(\frac{\pi}{3}\)) ; cos2α
2) cho cosα = 0,6 và \(\frac{3\pi}{2}\)<α<2π
a) sinα, tanα, cotα
b) sin2α ; cos(α + \(\frac{\pi}{6}\))
mn giup e mấy câu này vs T_T
1. sin(\(\frac{\pi}{3}\)-x), biết cosx= \(-\frac{12}{13}\) (\(\frac{\pi}{2}< \frac{x}{2}< \frac{3\pi}{4}\))
2.cot\(\left(x-\frac{\pi}{4}\right)\), biết \(sinx=\frac{-4}{5}\left(\pi< x< \frac{3\pi}{2}\right)\)
3.tan\(\left(x+\frac{\pi}{4}\right)\), biết \(cot\left(\frac{5\pi}{2}-x\right)=2\)
Mọi người giúp em giải bài này ạ, em cảm ơn
Bài 1: Rút gọn biểu thức:
A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)
B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)
C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)
D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)
E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)
\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)
\(G=\frac{1+cos2a-cosa}{2sina-sina}\)
H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)
Bài 2: chứng minh
a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)
b) chứng minh biểu thức sau độc lập với biến x:
A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)
c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)
e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)
f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)
g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)
k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)
Bài 3: giải bất phương trình:
a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)
b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)
c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)
d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)
e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)
f)\(\frac{2x+1}{-x^2+x+6}\ge0\)
Bài 1: Cho sin α=\(\frac{1}{5}\) với 0∠α∠\(\frac{\pi}{2}\). Tính cos (α-\(\frac{\pi}{6}\))
Bài 2: Cho cos x=\(\frac{-2}{3}\) với\(\frac{\pi}{2}\)∠x∠π. Tính tan (\(\frac{\pi}{4}\)+x)
Bài 3: Cho tan α=\(\frac{-4}{7}\) với \(\frac{3\pi}{2}\)∠α∠2π. Tính cos (2α -\(\frac{\pi}{2}\))
Bài 4: Cho sin α =\(\frac{1}{2}\) với 0∠α∠π. Tính tan (2α -\(\frac{\pi}{2}\)) +sin α
Chứng minh các biểu thức sau không phụ thuộc x :
a) \(A=\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}-x\right)\)
b) \(B=\cos\left(\dfrac{\pi}{6}-x\right)-\sin\left(\dfrac{\pi}{3}+x\right)\)
c) \(C=\sin^2x+\cos\left(\dfrac{\pi}{3}-x\right).\cos\left(\dfrac{\pi}{3}+x\right)\)
d) \(D=\dfrac{1-\cos2x+\sin2x}{1+\cos2x+\sin2x}.\cot x\)
Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai ?
a) \(\sin\left(x+\dfrac{\pi}{2}\right)=\cos x\)
b) \(\cos\left(x+\dfrac{\pi}{2}\right)=\sin x\)
c) \(\sin\left(x-\pi\right)=\sin x\)
d) \(\cos\left(x-\pi\right)=\cos x\)