Cho α ∈ (0;\(\dfrac{\Pi}{2}\)) và tan α = 3. Khi đó sin(α +π) bằng
rút gọn biểu thức:
A= cosa.sin( b-c )+ cosb. sin(c-a) + cosc.sin( a-b)
B= \(sin^2x+cos\left(\frac{\pi}{3}-x\right).cos\left(\frac{\pi}{3}+x\right)\)
C=\(sin^2x+sin^2\left(\frac{2\pi}{3}+x\right)+sin^2\left(\frac{2\pi}{3}-x\right)\)
D=\(sin^2\left(\frac{\pi}{4}+x\right)-sin^2x-2sinx.sin\frac{\pi}{4}.cos\left(\frac{\pi}{4}+x\right)\)
Bài 1: Cho sin α=\(\frac{1}{5}\) với 0∠α∠\(\frac{\pi}{2}\). Tính cos (α-\(\frac{\pi}{6}\))
Bài 2: Cho cos x=\(\frac{-2}{3}\) với\(\frac{\pi}{2}\)∠x∠π. Tính tan (\(\frac{\pi}{4}\)+x)
Bài 3: Cho tan α=\(\frac{-4}{7}\) với \(\frac{3\pi}{2}\)∠α∠2π. Tính cos (2α -\(\frac{\pi}{2}\))
Bài 4: Cho sin α =\(\frac{1}{2}\) với 0∠α∠π. Tính tan (2α -\(\frac{\pi}{2}\)) +sin α
Bài 5: Tính
a) sin y =\(\frac{1}{3}\) và \(\frac{\pi}{2}\)≤ y ≤π. Tính sin 2y, cos (\(\frac{\pi}{3}\)-y), tany +5
b) cos a =\(\frac{3}{5}\)và \(\frac{-\pi}{2}\)≤ a ≤0 . Tính sin2a, cos2a,tan2a
c) tan α=\(\sqrt{3}\) và π ≤α ≤\(\frac{3\pi}{2}\). Tính (\(\sqrt{3}\) -sin2α )sin\(\frac{2\pi}{3}\)
Tìm các gía trị lượng giác của cung \(\alpha\) biết
a \(sin\alpha=\frac{1}{5},\frac{\pi}{2}< \alpha< \pi\)
b \(tan\alpha=-\frac{1}{5},3\frac{\pi}{2}< \alpha< 2\pi\)
c \(sin2\alpha=\frac{2}{3},0< \alpha< \frac{\pi}{2}\)
d \(sin\alpha+cos\alpha=\sqrt{2},\frac{\pi}{2}< \alpha< \pi\)
Mọi người giúp em giải bài này ạ, em cảm ơn
Bài 1: Rút gọn biểu thức:
A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)
B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)
C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)
D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)
E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)
\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)
\(G=\frac{1+cos2a-cosa}{2sina-sina}\)
H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)
Bài 2: chứng minh
a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)
b) chứng minh biểu thức sau độc lập với biến x:
A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)
c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)
e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)
f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)
g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)
k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)
Bài 3: giải bất phương trình:
a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)
b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)
c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)
d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)
e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)
f)\(\frac{2x+1}{-x^2+x+6}\ge0\)
rút gọn
cos(\(\frac{5\Pi}{2}\))-x-2sin(\(\frac{3\Pi}{2}\)-x)+cos(5\(\Pi\)-x)-sin(x-\(\frac{3\Pi}{2}\))
RÚT GỌN:
A=cos 32 độ.cos 28 độ-sin32độ.sin28 độ
B=cos 220 độ.cos 170 độ-sin 220 độ.sin 170 độ
C=\(cos\frac{5\pi}{9}.sin\frac{7\pi}{1\text{8}}-sin\frac{5\pi}{9}.cos\frac{7\pi}{1\text{8}}\)
.(MOỊ NGƯỜI ƠI GIÚP MÌNH VỚI MÌNH CẢM ƠN NHIỀU)
Cho \(\frac{\pi}{2}< a< \frac{3\pi}{4}\). Xét dấu của các giá trị lượng giác \(cos\left(a+\frac{3\pi}{8}\right)\); \(tan\left(a-\frac{7\pi}{4}\right)\)