\(\dfrac{3!.4.5.\left(m-1\right)!.m.\left(m+1\right)}{m\left(m+1\right)3!.\left(m-1\right)!}\)
=\(4.5\)
=20
\(\dfrac{3!.4.5.\left(m-1\right)!.m.\left(m+1\right)}{m\left(m+1\right)3!.\left(m-1\right)!}\)
=\(4.5\)
=20
Chứng minh rằng :
a) \(C^{m-1}_{n-1}=\dfrac{m}{n}C^m_n\) \(\left(1\le m\le n\right)\)
b) \(C^m_{m+n}=C^m_{m+n-1}+C^n_{m+n-1}\) \(\left(1\le m,n\right)\)
Giả sử A và B là hai biến cố và \(\dfrac{P\left(A\cup B\right)}{P\left(A\right)+P\left(B\right)}=a\)
Chứng minh rằng :
a) \(\dfrac{P\left(A\cap B\right)}{P\left(A\right)+P\left(B\right)}=1-a\)
b) \(\dfrac{1}{2}\le a\le1\)
1.tìm max A=(\(\frac{x}{x+2020}\))\(^2\) với x>0
2. tìm min C= \(\frac{\left(4x+1\right)\left(4+x\right)}{x}\) với x dương
3.cho 3a+5b=12. tìmmin B=ab
4.tìm min \(x^2-x+4+\frac{1}{x^2-x}\)
5. cho x,y là 2 số thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y}{4}=4\).tìm min max của xy
6. cho a,b>0 và a+b=1. tìm min M=\(\left(1+\frac{1}{a}\right)^2\left(1+\frac{1}{b}\right)^2\)
Tìm số hạng trong khai triển nhị thức New-tơn của \(\left(2x^2-\dfrac{3}{x}\right)^n\) biết rằng
\(C^1_n+2C^2_n+3C^3_n+...+nC^n_n=256n\)
Tìm số hạng không chứa x trong khai triển nhị thức New-tơn của \(\left(2x^2-\dfrac{3}{x}\right)^n\) biết rằng
\(C^1_n+2C^2_n+3C^3_n+...+nC^n_n=256n\)
\(3^n\cdot C^0_n-3^{n-1}\cdot C^1_n+3^{n-2}\cdot C^2_n-...+\left(-1\right)^n\cdot C^n_n=2048\)
Cho X = \(\left\{1;2;...;9\right\}\), gọi S là tập hợp các số tự nhiên gồm 4 chữ số lập từ S. Chọn ngẫu nhiên 2 số trong S. Tính xác suất để được ít nhất 1 số thõa mãn tổng các chữ số chia hết cho 11
Giải hệ PT:
\(\left\{{}\begin{matrix}x+2y=3\\\sqrt{y+3}+\sqrt{x+7y+1}+y^3+y=10\end{matrix}\right.\)
Gọi S là tập hợp các số tự nhiên có 6 chữ số được lập từ tập hợp \(A=\left\{0;1;2;3;4;5;6\right\}\). Chọn ngẫu nhiên 1 số từ tập hợp S . Tính xác suất để chọn được số tự nhiên có tích các chữ số bằng 120.