\(B=\dfrac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\dfrac{1-x}{\sqrt{1-x^2}-\left(1-x\right)}\)
\(=\dfrac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\dfrac{1-x}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}\)
\(=\dfrac{\sqrt{1-x^2}+1-x}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}\)
\(=\dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\)
\(\Leftrightarrow Q=\dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}:\left(\dfrac{\sqrt{1-x}}{\sqrt{x}}-\dfrac{1}{x}\right)\)
\(=\dfrac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}:\dfrac{\sqrt{1-x^2}-1}{x}\)
\(=\dfrac{\left(\sqrt{1+x}+\sqrt{1-x}\right)^2}{1+x-1+x}\cdot\dfrac{x}{\sqrt{1-x^2}-1}\)
\(=\dfrac{1+x+1-x+2\sqrt{1-x^2}}{2\left(\sqrt{1-x^2}-1\right)}=1\)