\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{7}+\sqrt{3}\right|-\left|\sqrt{7}-\sqrt{3}\right|\right)\)
\(=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}\\ =\dfrac{\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)}{\sqrt{2}}\\ =\dfrac{\left(\sqrt{7+2\sqrt{7}.\sqrt{3}+3}-\sqrt{7-2\sqrt{7}.\sqrt{3}+3}\right)}{\sqrt{2}}\\ =\dfrac{\sqrt{7}+\sqrt{3}-\sqrt{7}+\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{3}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{3}{2}}=2\sqrt{\dfrac{3}{2}}=\sqrt{6}\)