\(\left(\dfrac{2}{x+2}-\dfrac{4}{x^2+4x+4}\right):\left(\dfrac{2}{x^2-4}+\dfrac{1}{2-x}\right)\\ =\left(\dfrac{2\left(x+2\right)}{\left(x+2\right)^2}-\dfrac{4}{\left(x+2\right)^2}\right):\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right)\\ =\left(\dfrac{2x}{\left(x+2\right)^2}\right):\left(\dfrac{2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x+2\right)\left(x-2\right)}\right)\\ =\dfrac{2x}{\left(x+2\right)^2}:\dfrac{-x}{x^2-4}\\ =\dfrac{2x}{\left(x+2\right)^2}.\dfrac{x^2-4}{-x}=-\dfrac{2x^2-8}{\left(x+2\right)^2}\)