Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Anh Ramsay

Bài 4( 1đ ) : Cho biểu thức

                B = \(\left(\dfrac{2x+1}{x-1}+\dfrac{8}{x^2-1}-\dfrac{x-1}{x+1}\right).\dfrac{x^2-1}{5}\)

               a/ Tìm điều kiện xác định của biểu thức B

               b/ Rút gọn biểu thức B, và chứng tỏ B > 0 với mọi x = +-1 

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:11

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(B=\left(\dfrac{2x+1}{x-1}+\dfrac{8}{x^2-1}-\dfrac{x-1}{x+1}\right)\cdot\dfrac{x^2-1}{5}\)

\(=\left(\dfrac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{2x^2+2x+x+1+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{5}\)

\(=\dfrac{2x^2+3x+9-x^2+2x-1}{5}\)

\(=\dfrac{x^2+5x+8}{5}\)

Ta có: \(x^2+5x+8\)

\(=x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)

Ta có: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\forall x\)

\(\Leftrightarrow x^2+5x+8>0\forall x\)

\(\Leftrightarrow\dfrac{x^2+5x+8}{5}>0\forall x\) thỏa mãn ĐKXĐ(đpcm)


Các câu hỏi tương tự
Vũ Bích Phương
Xem chi tiết
Linh
Xem chi tiết
Đức Anh Ramsay
Xem chi tiết
KGP123
Xem chi tiết
kim hanie
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Linh
Xem chi tiết
Hằng Bích
Xem chi tiết
Đồng Vy
Xem chi tiết