Ta có: \(m+n+k=0\)
\(\Leftrightarrow m+n=-k\)
\(\Leftrightarrow\left(m+n\right)^2=\left(-k\right)^2\)
\(\Leftrightarrow m^2+2mn+n^2=k^2\)
\(\Leftrightarrow m^2+n^2-k^2=-2mn\)
Tương tự, ta có: \(n^2+k^2-m^2=-2nk\)
\(k^2+m^2-n^2=-2km\)
Thay \(m^2+n^2-k^2=-2mn;n^2+k^2-m^2=-2nk;\)\(k^2+m^2-n^2=-2km\) vào biểu thức M ta có:
M = \(\dfrac{1}{-2mn}+\dfrac{1}{-2nk}+\dfrac{1}{-2km}=\dfrac{-1}{2}\left(\dfrac{1}{mn}+\dfrac{1}{nk}+\dfrac{1}{km}\right)\)
M = \(\dfrac{-1}{2}\left(\dfrac{nk^2m+m^2nk+mn^2k}{m^2n^2k^2}\right)\)
\(M=\dfrac{-1}{2}\left(\dfrac{mnk\left(k+m+n\right)}{m^2n^2k^2}\right)\)
M = \(\dfrac{-1}{2}.\dfrac{0}{mnk}\)\(=0\)