\(\dfrac{2sin8a-sin16a}{2sin8a+sin16a}=\dfrac{2sin8a-2sin8a.cos8a}{2sin8a+2sin8a.cos8a}=\dfrac{2sin8a\left(1-cos8a\right)}{2sin8a\left(1+cos8a\right)}=\dfrac{1-cos8a}{1+cos8a}=\dfrac{1-\left(1-2sin^24a\right)}{1+\left(1-2sin^24a\right)}=\dfrac{2sin^24a}{2-2sin^24a}=\dfrac{sin^24a}{1-sin^24a}=\dfrac{sin^24a}{cot^24a}=tan^24a\)
\(=\dfrac{2sin8a-2sin8a.cos8a}{2sin8a+2sin8a.cos8a}=\dfrac{2sin8a\left(1-cos8a\right)}{2sin8a\left(1+cos8a\right)}=\dfrac{1-cos8a}{1+cos8a}\)
\(=\dfrac{1-\left(1-2sin^24a\right)}{1+\left(2cos^24a-1\right)}=\dfrac{2sin^24a}{2cos^24a}=tan^24a\)