Sửa đề: cosa=3/5
3pi/2<a<2pi
=>sin a<0
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà sin a<0
nên sina =-4/5
tan a=-4/5:3/5=-4/3
cot a=1:(-4/3)=-3/4
Sửa đề: cosa=3/5
3pi/2<a<2pi
=>sin a<0
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{25}=\dfrac{16}{25}\)
mà sin a<0
nên sina =-4/5
tan a=-4/5:3/5=-4/3
cot a=1:(-4/3)=-3/4
Cho góc α thõa mãn \(\cot\alpha=\frac{1}{3}\) Tính giá trị biểu thức T=\(\frac{2016}{\sin^{2^{ }}\alpha-\sin\alpha.\cos\alpha-\cos^{2^{ }}\alpha}\)
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc \(\alpha,\beta\) :
a) \(\sin6\alpha\cot3\alpha-\cos6\alpha\)
b) \(\left[\tan\left(90^0-\alpha\right)-\cot\left(90^0+\alpha\right)\right]^2-\left[\cot\left(180^0+\alpha\right)+\cot\left(270^0+\alpha\right)\right]^2\)
c) \(\left(\tan\alpha-\tan\beta\right)\cot\left(\alpha-\beta\right)-\tan\alpha\tan\beta\)
d) \(\left(\cot\dfrac{\alpha}{3}-\tan\dfrac{\alpha}{3}\right)\tan\dfrac{2\alpha}{3}\)
Cho tan alpha = 2 tính giá trị biểu thức P= 5Sin alpha - 3Cos alpha : cos alpha + 2 sin alpha
Chung minh rang voi moi goc luong giac α lam cho bieu thuc xac dinh thi
a) \(\dfrac{1-sin2\alpha}{1+sin2\alpha}\)=cot\(^2\)(\(\dfrac{\pi}{4}\)+α) b) \(\dfrac{sin\alpha+sin\beta cos\left(\alpha+\beta\right)}{cos\alpha-sin\beta sin\left(\alpha+\beta\right)}\)=tan\(\left(\alpha+\beta\right)\).
chứng minh rằng các biểu thức sau không phụ thuộc vào \(\alpha\) : a) P = sin2\(\alpha\)(1 + cot\(\alpha\)) + cos2\(\alpha\)(1 - tan\(\alpha\)) ; b) Q = cos4\(\alpha\)(3 - 2cos2\(\alpha\)) + sin4\(\alpha\)(3 - 2sin2\(\alpha\))
Không dùng bảng số và máy tính, chứng minh rằng :
a) \(\sin20^0+2\sin40^0-\sin100^0=\sin40^0\)
b) \(\dfrac{\sin\left(45^0+\alpha\right)-\cos\left(45^0+\alpha\right)}{\sin\left(45^0+\alpha\right)+\cos\left(45^0+\alpha\right)}=\tan\alpha\)
c) \(\dfrac{3\cot^215^0-1}{3-\cot^215^0}=-\cot15^0\)
d) \(\sin200^0\sin310^0+\cos340^0\cos50^0=\dfrac{\sqrt{3}}{2}\)
a) cho \(\tan\alpha\) = 5 . tính \(\frac{\sin\alpha}{\sin^3\alpha+\cos^3\alpha}\) ; b) chứng minh đẳng thức : \(\frac{1+\sin\chi+\cos2\chi+\sin3\chi}{1+2\sin\chi}\) = 2cos2\(\chi\)
a) cho sin\(\alpha\) = \(\frac{4}{5}\) (\(\frac{\pi}{2}\)<\(\alpha\) <\(\pi\)) . Tính sin2\(\alpha\) , cos2\(\alpha\) ; b) cho tan\(\alpha\) = 2 (\(\pi\)<\(\alpha\) <\(\frac{3\pi}{2}\)) . Tính sin2\(\alpha\) , cos2\(\alpha\) .
Chứng minh rằng:
\(\sin^3\dfrac{\alpha}{3}+3\sin^3\dfrac{\alpha}{3^2}+...+3^{n-1}\sin^3\dfrac{\alpha}{3^n}=\dfrac{1}{4}\left(3^n\sin\dfrac{\alpha}{3^n}-\sin\alpha\right)\)