a) \(\frac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2+\sqrt{3}}\cdot\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2+\sqrt{3}}\cdot\sqrt{4-3}}{\sqrt{2}+\sqrt{3}}\)
\(=\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}+\sqrt{3}}\)
b) Xét \(\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)^2\)
\(=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}\)
\(=6+2\sqrt{9-5}\)
\(=6+2\cdot2\)
\(=10\)