\(A=\frac{8\sqrt{41}}{\sqrt{\sqrt{41}^2+2.2.\sqrt{41}+2^2}+\sqrt{\sqrt{41}^2-2.2.\sqrt{41}+2^2}}.\frac{1}{\sqrt{3}-\sqrt{2}}\)
\(=\frac{8\sqrt{41}}{\sqrt{\left(\sqrt{41}+2\right)^2}+\sqrt{\left(\sqrt{41}-2\right)^2}}.\frac{\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\frac{8\sqrt{41}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{41}+2+\sqrt{41}-2}=\frac{8\sqrt{41}\left(\sqrt{3}+\sqrt{2}\right)}{2\sqrt{41}}=4\left(\sqrt{3}+\sqrt{2}\right)\)