\(A=\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\dfrac{2\sqrt{x}-1}{\sqrt{x}-x}=\left[\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-x\right)\left(2x+\sqrt{x}-1\right)}{\left(1-x\right)\left(x-\sqrt{x}+1\right)}\right]:\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}=\dfrac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1+\sqrt{x}-x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}=\dfrac{\sqrt{x}\left(2x+2\sqrt{x}-\sqrt{x}-1\right)}{\left(1+\sqrt{x}\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)