\(\sqrt{14+6\sqrt{5}}=\sqrt{9+2\cdot3\cdot\sqrt{5}+5}=\sqrt{\left(3+\sqrt{5}\right)^2}=3+\sqrt{5}\)
\(\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{3^2+2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(=\left|3+\sqrt{5}\right|\)
\(=3+\sqrt{5}\)
a,Ta có :\(\sqrt{14+6\sqrt{5}}=\sqrt{5+2.\sqrt{5}.3+9}=\sqrt{\left(\sqrt{5}+9\right)^2}=\sqrt{5}+9\)