\(\frac{4k}{4k^4+1}=\frac{4k}{4k^4+4k^2+1-4k^2}=\frac{4k}{\left(2k^2+1\right)^2-\left(2k\right)^2}=\frac{4k}{\left(2k^2+2k+1\right)\left(2k^2-2k+1\right)}=\frac{1}{2k^2-2k+1}-\frac{1}{2k^2+2k+1}\)
\(=\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+...+\frac{1}{2k\left(k-1\right)+1}-\frac{1}{2k\left(k+1\right)+1}\)
\(=1-\frac{1}{2k\left(k+1\right)+1}=...\)