\(\dfrac{1}{\left(a+b\right)^3}\left(\dfrac{1}{a^3}+\dfrac{1}{a^3}\right)+\dfrac{3}{\left(a+b\right)^4}+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)+\dfrac{6}{\left(a+b\right)^5}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{b^3+a^3}{a^3b^3}+\dfrac{3}{\left(a+b\right)^4}\cdot\dfrac{b^2+a^2}{a^2b^2}+\dfrac{6}{\left(a+b\right)^5}\cdot\dfrac{b+a}{ab}\)
\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{\left(b+a\right)\left(a^2-ab+a^2\right)}{a^3b^3}+\dfrac{3\left(b^2+a^2\right)}{a^2b^2\cdot\left(a+b\right)^4}\cdot\dfrac{6}{\left(a+b\right)^4}\cdot\dfrac{1}{ab}\)
\(=\dfrac{1}{\left(a+b\right)^2}\cdot\dfrac{b^2-ab+a^2}{a^3b^3}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\left(a+b\right)^4}\)
\(=\dfrac{b^2-ab+a^2}{a^3b^3\cdot\left(a+b\right)^2}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\cdot\left(a+b\right)^4}\)
\(=\dfrac{\left(a+b\right)^2\cdot\left(b^2-ab+a^2\right)+ab\left(3b^2+3a^2\right)+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{\left(a^2+2ab+b^2\right)\left(b^2-ab+a^2\right)+3ab^3+3a^3b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{a^2b^2-a^3b+a^4+2ab^3-2a^2b^2+2a^3b+b^4-ab^3+a^2b^2+3ab^3+3a^2b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{6a^2b^2+4a^3b+a^4+4ab^3+b^4}{a^3b^3\cdot\left(a+b\right)^4}\)