\(C=1+2^5+2^{10}+2^{15}+...+2^{2015}\)
\(\Leftrightarrow32C=2^5+2^{10}+...+2^{2020}\)
=>\(31C=2^{2020}-1\)
hay \(C=\dfrac{2^{2020}-1}{31}\)
\(B=1+2+2^2+...+2^{2019}\)
=>\(2B=2+2^2+...+2^{2020}\)
=>\(B=2^{2020}-1\)
\(A=\dfrac{B}{C}=\dfrac{2^{2020}-1}{\dfrac{2^{2020}-1}{31}}=31\)