a)Đặt A=.......
Bình phương 2 vế rồi làm binh thường
a)Đặt A=.......
Bình phương 2 vế rồi làm binh thường
* Rút gọn biểu thức
a. \(\left(2\sqrt{125}-3\sqrt{5}-\sqrt{180}\right):\left(-\sqrt{5}\right)+\sqrt{8}\)
b. \(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{18}\)
c. \(\sqrt{48}-6\sqrt{\dfrac{1}{3}}+\dfrac{\sqrt{3}-3}{\sqrt{3}}\)
d.\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}\right)\)
Tính giá trị các biểu thức sau:
a) \(A=\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
b) \(A=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
c) \(A=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Tính
a) \(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}+4\sqrt{\dfrac{3}{2}}\right)\times\left(2\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
b) \(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
c) \(\left(\sqrt{11+2\sqrt{24}}-\sqrt{11-2\sqrt{24}}\right):2\sqrt{3}\)
d) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
e) \(\sqrt{5+6\sqrt{2}}-\sqrt{9-6\sqrt{2}}-\sqrt{21-12\sqrt{3}}\)
f) \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D= \(\dfrac{\left(5+4\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
* Rút gọn các biểu thức
a. \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-4}.\sqrt[3]{2}\)
c. \(6\sqrt{\dfrac{1}{2}}-\dfrac{2}{\sqrt{2}}-3\sqrt{8}\)
d. \(\dfrac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\dfrac{2}{\sqrt{3}-1}\)
Bài 1: Rút gọn
\(3\sqrt{9a^6}-6a^3\) (với mọi a)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(1-3x\right)^2}\) (Với \(\dfrac{1}{3}\) < x ≤ 1 )
\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(\sqrt{23-8\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\) (với 1<x<2)
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\) (với x ≥4)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
\(\left(\dfrac{\sqrt{6}-\sqrt{10}}{\sqrt{5}-\sqrt{3}}+3\right)\left(3+\dfrac{2\sqrt{5}+\sqrt{6}}{\sqrt{10}+\sqrt{3}}\right)\)
Rút gọn biểu thức trên
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D=\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Mình sửa lại để m.n dễ nhìn hơn!