b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)
a,A=\(\dfrac{\sqrt{2.}\sqrt{3}+\sqrt{2}.\sqrt{7}}{2\sqrt{3}+2\sqrt{7}}\)
A=\(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
A=\(\dfrac{\sqrt{2}}{2}\)
b,B=\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
B=\(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{4}+\sqrt{6}\right)}{\sqrt{2}+\sqrt{4}+\sqrt{6}}\)
B=\(\dfrac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)\
B=\(\sqrt{2}+1\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}=\dfrac{1}{\sqrt{2}}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
=\(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
=\(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
=\(1+\sqrt{2}\)
=\(\dfrac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{7}}{2\sqrt{3}+\sqrt{7}.\sqrt{4}}\)
=\(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
=\(\dfrac{\sqrt{2}}{2}\)