a) Diện tích của phần hình màu xanh ở Hình 2.1a là: \({a^2} - {b^2}\).
b) Diện tích hình chữ nhật màu xanh ở Hình 2.1b là: \(\left( {a + b} \right)\left( {a - b} \right)\).
c) Diện tích hai hình ở câu a và b bằng nhau.
a) Diện tích của phần hình màu xanh ở Hình 2.1a là: \({a^2} - {b^2}\).
b) Diện tích hình chữ nhật màu xanh ở Hình 2.1b là: \(\left( {a + b} \right)\left( {a - b} \right)\).
c) Diện tích hai hình ở câu a và b bằng nhau.
Trong một trò chơi trí tuệ trên truyền hình dành cho học sinh, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả phép tính 198 . 202. Ngay lập tức một bạn đã chỉ ra kết quả đúng. Bạn ấy tính như thế nào mà nhanh thế nhỉ?
Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) \({x^2} + 4x + 4\)
b) \(16{a^2} - 16ab + 4{b^2}\)
Ở bài toán mở đầu, em hãy giải thích xem bạn đó tính nhanh như thế nào.
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right)\left( {a - b} \right)\).
Từ đó rút ra liên hệ giữa \({a^2} - {b^2}\) và \(\left( {a + b} \right)\left( {a - b} \right)\).
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)
Trong các đẳng thức sau, đẳng thức nào là hằng đẳng thức?
a) \(a\left( {a + 2b} \right) = {a^2} + 2ab\)
b) \(a + 1 = 3a - 1\)
Những đẳng thức nào sau đây là hằng đẳng thức?
a) \(x + 2 = 3x + 1\)
b) \(2x\left( {x + 1} \right) = 2{x^2} + 2x\)
c) \(\left( {a + b} \right)a = {a^2} + ba\)
d) \(a - 2 = 2a + 1\)
Rút gọn các biểu thức sau:
a) \({\left( {x - 3y} \right)^2} - {\left( {x + 3y} \right)^2}\)
b) \({\left( {3x + 4y} \right)^2} + {\left( {4x - 3y} \right)^2}\)