\(198.202 = \left( {200 - 2} \right).\left( {200 + 2} \right) = {200^2} - {2^2} = 40000 - 4 = 39996.\)
\(198.202 = \left( {200 - 2} \right).\left( {200 + 2} \right) = {200^2} - {2^2} = 40000 - 4 = 39996.\)
Trong một trò chơi trí tuệ trên truyền hình dành cho học sinh, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả phép tính 198 . 202. Ngay lập tức một bạn đã chỉ ra kết quả đúng. Bạn ấy tính như thế nào mà nhanh thế nhỉ?
Trong trò chơi “Ai thông minh hơn học sinh lớp 8”, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả của phép tính \({1002^2}\). Chỉ vài giây sau, Nam đã tính ra kết quả chính xác và giành được điểm. Em hãy giải thích xem Nam đã tính nhanh như thế nào.
Tính nhanh:
a) \(54.66\);
b) \({203^2}\).
a) Tính nhanh \({99^2} - 1\)
b) Viết \({x^2} - 9\) dưới dạng tích.
Quan sát Hình 2.1
a) Tính diện tích của phần hình màu xanh ở Hình 2.1a.
b) Tính diện tích hình chữ nhật màu xanh ở Hình 2.1b.
c) Có nhận xét gì về diện tích của hai hình ở câu a và câu b?
Trong các đẳng thức sau, đẳng thức nào là hằng đẳng thức?
a) \(a\left( {a + 2b} \right) = {a^2} + 2ab\)
b) \(a + 1 = 3a - 1\)
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right)\left( {a - b} \right)\).
Từ đó rút ra liên hệ giữa \({a^2} - {b^2}\) và \(\left( {a + b} \right)\left( {a - b} \right)\).
Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right).\left( {a + b} \right)\).
Từ đó rút ra liên hệ giữa \({\left( {a + b} \right)^2}\) và \({a^2} + 2ab + {b^2}\)
1. Khai triển \({\left( {2b + 1} \right)^2}\)
2. Viết biểu thức \(9{y^2} + 6yx + {x^2}\) dưới dạng bình phương của một tổng.