Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ hai tiếp tuyến SA và SA' (A và A' là tiếp điểm) và cát tuyến SBC (B nằm giữa C và S) với đường tròn. Phân giác của góc BAC cắt BC tại D, cắt đường tròn tại E. Gọi H là giao điểm của OS và AA', G là giao điểm của OE và BS, F là giao điểm của AA' và BC
a) Tam giác SAD là tam giác gì? Vì sao?
b) Cm SF . SG = SO . SH
c) SA^2 = SF . SG
Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ tiếp tuyến SA và cát tuyến SBC tới đường tròn. Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Kẻ tiếp tuyến SA’ với đường tròn (O). Gọi H là giao điểm OS và AA’ , G là giao của OE và BS; F là giao của AA’ với BC. Trên tia AC lấy điểm Q sao cho AQ = AB. Chứng minh AO vuông góc DQ.
Cho đường tròn tâm O bán kính R và đường thẳng (d) cắt đường tròn tâm O tại hai điểm C và D (đường thẳng d không đi qua tâm O). Từ điểm S bất kì thuộc tia CD (S nằm ngoài đường tròn tâm O), kẻ hai tiếp tuyến SA và SB với đường tròn tâm O (với A và B là các tiếp điểm). Gọi H là trung điểm của đoạn CD và E là giao điểm của AB với SC. Chứng minh rằng: Khi S di chuyển trên tia CD (S nằm ngoài đường tròn tâm O) thì đường thẳng AB luôn đi qua 1 điểm cố định
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn .Kẻ các tiếp tuyến SA,SB với đường tròn (A,B là các tiếp điểm).Một đường thẳng đi qua S(không đi qua tâm 0)cắt đường tròn (O;R) tại hai điểm M và N nằm giữa S và N.Gọi H là giao điểm của SO và AB;I là trung điểm MN.Hai đường thẳng OI và AB cắt nhau E
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn
b) Chứng minh : OI.OE=R\(^2\)
c) Cho SO=2R và MN=R\(\sqrt{3}\) .Tính diện tích tam giác ESM theo R
AI GIÚP VVS HELP ME T_T
Cho AB và CD là hai đường kính vuông góc của đường tròn (O; R). Trên tia đối của tia CO lấy điểm S, SA cắt đường tròn (O) tại M. Tiếp tuyến tại M với đường tròn (O) cắt CD tại E, BM cắt CO tại F
a, Chứng minh: EM.AM = MF.OA
b, Chứng minh: ES = EM = EF
c, Gọi I là giao điểm của đoạn thẳng SB và (O). Chứng minh A, I, F thẳng hàng
d, Cho EM = R, tính FA.SM theo R
e, Kẻ MHAB. Xác định vị trí điểm M để tam giác MHO có diện tích đạt giá trị lớn nh
Cho (O) và 2 tiếp tuyến SA, SB. Kẻ dây cung BC. Đường kính vuông góc với AC cắt BC tại I. Chứng minh:
a) 4 điểm S, A, I, B thuộc 1 đường tròn
b) Tứ giác SAOI nội tiếp
c) SI song song với AC
Cho (O) và 2 tiếp tuyến SA, SB. Kẻ dây cung BC. Đường kính vuông góc với AC cắt BC tại I. Chứng minh:
a) 4 điểm S, A, I, B thuộc 1 đường tròn
b) Tứ giác SAOI nội tiếp
c) SI song song với AC
Cho (O) và 2 tiếp tuyến SA, SB. Kẻ dây cung BC. Đường kính vuông góc với AC cắt BC tại I. Chứng minh:
a) 4 điểm S, A, I, B thuộc 1 đường tròn
b) Tứ giác SAOI nội tiếp
c) SI song song với AC
Cho đường tròn (O; R) và một điểm S ở ngoài đường tròn (O; R). Từ điểm S kẻ hai tiếp tuyến SA, SB tới (O; R) (A và B là các tiếp điểm). Kẻ dây cung BC song song với SA; SC cắt đường tròn (O; R) tại điểm thứ hai là D; tia BD cắt SA tại điểm M.
1. Chứng minh MA2 = MD.MB
2. Gọi I là trung điểm đoạn DC. Chứng minh năm điểm S, B, I, O, A cùng thuộc một đường tròn và tia IS là phân giác của góc BIA.
3. Qua điểm I kẻ đường thẳng song song với AC cắt AB tại E. Chứng minh ED // BC