có : x= \(\sqrt[3]{3+2\sqrt{2}}\) + \(\sqrt[3]{3-2\sqrt{2}}\)
⇔x3 = 3+ \(2\sqrt{2}\) + 3-\(2\sqrt{2}\)+ 3\(\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
⇔x3 = 6 +3 \(\sqrt[3]{9-8}\).x
⇔x3 = 6+3x
Tương tự: y3 = 18+3y
Thay vào P ta được:
P= x3 +y3 -3(x+y) +1996
=6+3x +18+3y -3(x+y)+1996
= 24 +3(x+y)-3(x+y) +1996
=2020.
Vậy P=2020.