Để phương trình vô nghiệm thì m^2-5m+6=0 và m^2-2m<>0
=>m=3
Để phương trình vô nghiệm thì m^2-5m+6=0 và m^2-2m<>0
=>m=3
1.Bất phương trình (m2-3m)x+m<2-2x vô nghiệm khi:
a.m#1 b.m#2 c.m=2 d.=3
2.Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2-m)x +m<6x-2
GIUP MÌNH VỚI Ạ
tìm m sao cho
4(m2+2m+1)x-5m≥3x-m-1 thỏa ∀ x>3/2
Bài 1: Giải các bất phương trình:
3(1 - x)> \(\dfrac{7-3x^2}{x+1}\)
Bài 2. Giải và biện luận bất phương trình
( m2 - 4 ) x +3 > ( 2m -1) x +m
Tìm điều kiện của tham số m để bất phương trình (m2-4)x2+2(m-2)x-10≥0 có nghiệm
tìm m để các bất phương trình sau đúng với mọi x:
a) (m+1)x + m <3m+4
b) mx + 1 > m2 + x
Tìm mệnh đêy để Bpt vô nghiệm:
(1).(m^2-5m)x+2m>=1-6x
(2).x+m^2=<m^2x-5m+6
(3).mx-2m+1>6x-2
Cho phương trình \(m.2^{x+1}+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x< 0\)
a. Giải phương trình khi \(m=-\frac{1}{2}\)
b. Tìm m để phương trình có nghiệm
Tìm m để bpt (m-2)x2 - 2(2m-3)x +5m - 6 > 0 vô nghiệm
Hãy viết điều kiện của bất phương trình sau rồi suy ra rằng bất phương trình đó vô nghiệm :
\(\dfrac{\sqrt{5-x}}{\sqrt{x-10}\left(\sqrt{x}+2\right)}< \dfrac{4-x^2}{\left(x-4\right)\left(x+5\right)}\)