a) x3 - x2 - 5x + 125
=(x3-6x2+25x)+(5x2-30x+125)
=x(x2-6x+25)+5(x2-6x+25)
=(x+5)(x2-6x+25)
b) x3 + 2x2 - 6x - 27
=x3+5x2+9-3x2-15x-27
=x(x2+5x+9)-3(x2+5x+9)
=(x-3)(x2+5x+9)
c) 12x3 + 4x2 - 27x - 9
=4x2(3x+1)-9(3x+1)
=(4x2-9)(3x+1)
=[(2x)2-32](3x+1)
=(2x-3)(2x+3)(3x+1)
a) \(x^3-x^2-5x+125\)
\(=\left(x^3+125\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)+\left(2x^2-6x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9+2x\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
c) \(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x-1\right)\left(4x^2-9\right)=\left(3x-1\right)\left(2x-3\right)\left(2x+3\right)\)
a) \(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^3-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^3-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^3-6x+25\right)\)
a) \(x^3-x^2-5x+125\)
\(=\left(5+x\right)\left(25-5x+x^2\right)-x\left(5+x\right)\)
\(=\left(5+x\right)\left(25-5x+x^2-x\right)\)
\(=\left(5+x\right)\left(25-4x+x^2\right)\)
b) \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^3+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+3x+9+2x\right)\)
\(=\left(x+3\right)\left(x^3+5x+9\right)\)
a) x3 - x2 - 5x + 125
=\(x^3+5x^2-6x^2-30x+15x+125\)
=\(\left(x+5\right)\left(x^2-6x+15\right)\)
b) x3 + 2x2 - 6x - 27
=\(x^3-3x^2+5x^2-15x-9-27\)
=\(\left(x-3\right)\left(x^2+5x-9\right)\)
c) 12x3 + 4x2 - 27x - 9
=\(\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)\left(x+\frac{3}{2}\right)\)
=\(\)
c) \(12x^3+4x^2-27x-9\)
\(=12x^3+\left(2x\right)^2-3^3x-3^2\)
\(=\left(2x-3\right)\left(2x+3\right)+3\left(2^2.x^3-3^2x\right)\)
\(=\left(2x-3\right)\left(2x+3\right)+3\left\{x\left[\left(2x\right)^2-3^2\right]\right\}\)
\(=\left(2x-3\right)\left(2x+3\right)+3x\left(2x-3\right)\left(2x+3\right)\)
\(\left(2x-3\right)\left(2x+3\right)\left(3x+1\right)\)