Đặt \(x^2+x+2=t\) .Khi đó:
\(\left(x^2+x\right)\left(x^2+x+4\right)-60\)
\(=\left(t-2\right)\left(t+2\right)-60=t^2-6-60=t^2-64=\left(t-8\right)\left(t+8\right)\)
\(=\left(x^2+x+2-8\right)\left(x^2+x+2+8\right)=\left(x^2+x-6\right)\left(x^2+x+10\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(x^2+x+10\right)\)
Đặt \(t=x^2+x+2\)
Suy ra \(\left(x^2+x\right)\left(x^2+x+4\right)-60=\left(t-2\right)\left(t+2\right)-60=t^2-8^2=\left(t-8\right)\left(t+8\right)\)
\(=\left(x^2+x-6\right)\left(x^2+x+10\right)=\left(x+3\right)\left(x-2\right)\left(x^2+x+10\right)\)