\(x^8+3x^4+4\)
\(=x^8+4x^4+4-x^4\)
\(=\left(x^4-2\right)^2-x^4\)
\(=\left(x^4-x^2-2\right)\left(x^4-x^2-2x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+1\right)\left(x^2-1\right)\left(x^2+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+1\right)\left(x^2+2\right)\)
x8+3x4+4=(x8+4x4+4)-x4=(x4+2)2-x4=(x4+2-x2)(x4+2+x2)
\(x^8+3x^4+4\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)