Ta có:
\(\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(=\left(x-1\right)\left(x+7\right)\left(x-2\right)\left(x+8\right)+8\)
\(=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
\(=\left(x^2+6x-7\right)\left(x^2+6x-7-9\right)+8\)
Đặt \(t=x^2+6x-7\), ta được:
\(t\left(t-9\right)+8\)
\(=t^2-9t+8\)
\(=\left(t-8\right)\left(t-1\right)\)
Thay \(t=x^2+6x-7\) vào, ta được:
\(\left(x^2+6x-7-8\right)\left(x^2+6x-7-1\right)\)
\(=\left(x^2+6x-15\right)\left(x^2+6x-8\right)\)