Sửa đề bài: \(h\left(x\right)=\left(3x+2\right)\left(3x-5\right)\left(x-1\right)\left(9x+10\right)+24x^2\)
\(=\left(9x^2-9x-10\right)\left(9x^2+x-10\right)+24x^2\)
Đặt: \(9x^2-10=a\), đa thức h(x) trở thành:
\(h\left(x\right)=\left(a-9x\right)\left(a+x\right)+24x^2\)
\(=a^2-8ax-9x^2+24x^2\)
\(=a^2-8ax+15x^2\)
\(=a^2-3ax-5ax+15x^2\)
\(=a\left(a-3x\right)-5x\left(a-3x\right)\)
\(=\left(a-3x\right)\left(a-5x\right)\)
\(=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)
Vậy \(h\left(x\right)=\left(9x^2-3x-10\right)\left(9x^2-5x-10\right)\)