Cho x,y,z>0 tm\(xy+yz+zx\ge3\). C/m
\(\dfrac{x^3}{\sqrt{y^2+3}}+\dfrac{y^3}{\sqrt{z^2+3}}+\dfrac{z^3}{\sqrt{x^2+3}}\ge\dfrac{1}{2}\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z dương thỏa mãn xyz=1. GTNN của
P=\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
cho x,y,z>0 thỏa mãn: xyz=1. Tìm GTNN:
\(S=\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{xz}\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Chứng minh rằng \(\dfrac{1}{\sqrt{x+2y}}+\dfrac{1}{\sqrt{y+2z}}+\dfrac{1}{\sqrt{z+2x}}\le\sqrt{3}\).
Cho x,y,z là các số thực dương thỏa mãn điều kiện xyz=1. Chứng minh rằng
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+x^3+z^3}}{xz}\ge3\sqrt{3}\)
2) Cho a,b,c là các số dương thỏa mãn điều kiện: a>b; a+b+c=4
Tìm GTNN của biểu thức \(P=4a+3b+\dfrac{c^3}{\left(a-b\right)b}\)
@Ace Legona @TFboys
Cho các số dương x,y,z thỏa mãn \(xy+yz+zx=1\)
Chứng minh rằng \(\dfrac{x}{1+yz}+\dfrac{y}{1+zx}+\dfrac{z}{1+xy}\ge\dfrac{3\sqrt{3}}{4}\)
Cho x,y,z>0 và x+y+z = xyz
CMR
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\le\dfrac{3}{2}\)