a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2=2x-1\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(x^2-mx+m-1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>=0\)
Để phương trình có hai nghiệm phân biệt thì m-2<>0
hay m<>2
Theo đề, ta có: \(x_1+x_2+2\sqrt{x_1x_2}=9\)
\(\Leftrightarrow m+2\sqrt{m-1}=9\)
\(\Leftrightarrow\sqrt{m-1}=\dfrac{9-m}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\m^2-18m+81-4m+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1< m< 9\\\left(m-5\right)\left(m-17\right)=0\end{matrix}\right.\)
=>m=5