Cho biểu thức: \(P=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn P
b) Chứng minh P \(\ge\) 0
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Cho biểu thức: \(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}+\frac{2x}{2\sqrt{xy}+2\sqrt{y}-x-\sqrt{x}}.\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn A
b) Tìm các số nguyên dương x để y =625 và A <0,2
\(\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right]\)
Cho biểu thức: \(P=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
Rút gọn P. Cho \(x.y=16\). Xác định x, y để P có giá trị nhỏ nhất
Cho biểu thức: A= \(\frac{\left(\sqrt{x}-\sqrt{y}\right)+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)và B= \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
a, rút gọn A và B
b, tính giá trị của tích A.B với x=2y và y=\(\sqrt{3}\)
\(A=\frac{8}{4+2\sqrt{x}}-\frac{2-\sqrt{x}}{4-x}\)
\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)
Cho biểu thức: \(B=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn B
b) Chứng minh: \(B\ge0\)
c) So sánh B với \(\sqrt{B}\)
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)