Mặt cầu (S) tâm O bán kính R=3
Gọi I là hình chiếu vuông góc của O lên (P)
Phương trình đường thẳng d qua O và vuông góc (P) có dạng: \(\left\{{}\begin{matrix}x=2t\\y=t\\z=2t\end{matrix}\right.\)
Tọa độ I thỏa mãn: \(8t+2t+8t+7=0\Rightarrow t=-\frac{7}{18}\Rightarrow I\left(-\frac{7}{9};-\frac{7}{18};-\frac{7}{9}\right)\)
Gọi \(r\) là bán kính đường tròn giao tuyến (S) và (P), ta có \(OI=\frac{7}{6}\Rightarrow r=\frac{5\sqrt{11}}{6}\)
Mặt cầu chứa đường tròn giao tuyến trên có tâm nằm trên d nên gọi tọa độ tâm có dạng \(A\left(2a;a;2a\right)\) và bán kính \(R'\)
\(\left\{{}\begin{matrix}R'=d\left(A;\left(Q\right)\right)\\R'=\sqrt{d^2\left(A;\left(P\right)\right)+r^2}\end{matrix}\right.\)
\(\Rightarrow\frac{\left|3a-8a-20\right|}{\sqrt{3^2+\left(-4\right)^2}}=\sqrt{\frac{\left(8a+2a+8a+7\right)^2}{4^2+2^2+4^2}+\frac{275}{36}}\)
\(\Leftrightarrow\frac{\left(5a+20\right)^2}{25}=\frac{\left(18a+7\right)^2+275}{36}\)
\(\Leftrightarrow8a^2-a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{8}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}R_1=5\\R_2=\frac{25}{8}\end{matrix}\right.\)