Gọi chiều dài thửa ruộng là \(x( m) (x>5)\)
Gọi chiều rộng thửa ruongj là \(y ( m) (y >0)\)
Theo điều kiện đầu ta có phương trình \(x - 3y =0\)(1)
Theo điều kiện sau ta có phương trình \((x-5)-(y+3) =20 \)
⇒ \(x-5-y-3=20\)
⇔\(x-y=28\)(2)
Từ 1 và 2 ta có hệ \(\left\{{}\begin{matrix}x-3y=0\\x-y=28\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=42\left(tm\right)\\y=14\left(tm\right)\end{matrix}\right.\)
⇒ Diện tích thửa ruộng là 14.42=588(m2 )
Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m)
Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m :
( 3a - 5 ) - ( a+ 3 ) = 20
=> a = 14
Diện tích thửa ruộng :
S = 14 x 3 x 14 = 588 (m2)
Gọi chiều dài và chiều rộng lần lượt là x và y ( x>y, mét)
Vì có chiều dài gấp 3 lần chiều rộng nên ta có PT:
x=3y (1)
Biết rằng nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m.
⇒ Vậy nếu không tăng thì chiều dài hơn chiều rộng 20m nên ta có PT:
x-y=20 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x=3y\\x-y=20\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3y\\3y-y=20\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=30\\y=10\end{matrix}\right.\)(TM)
Vậy chiều dài và chiều rộng lần lượt là 30m và 10m
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; a≥ba≥b)
Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: a−b=5a−b=5(1)
Diện tích ban đầu của thửa ruộng là: a⋅b(m2)a⋅b(m2)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi 180m2180m2nên ta có phương trình:
(a−5)(b−4)=ab−180(a−5)(b−4)=ab−180
⇔ab−4a−5b+20−ab+180=0