Ok cần thì tui làm cho
Trước tiên cậu cần phải biết biểu thức của thế năng
\(W_t=\dfrac{1}{2}kx^2\)
Thay phương trình x đã cho vô:
\(W_t=\dfrac{1}{2}k.A^2.\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)\)
\(\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)=\dfrac{\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1}{2}\)
\(\Rightarrow W_t=\dfrac{1}{4}kA^2.\left[\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1\right]\)
Nhìn vào biểu thức ta kết luận được thế năng trong dao động của con lắc lò xo biến thiên tuần hoàn với chu kỳ là \(T=\dfrac{2\pi}{4\pi}=\dfrac{1}{2}\left(s\right)\)
Tương tự với động năng, ta sử dụng công thức không thời gian:
\(A^2=x^2+\dfrac{v^2}{\omega^2}\Rightarrow v^2=\omega^2\left(A^2-x^2\right)\)
\(\omega^2=\dfrac{k}{m}\Rightarrow m=\dfrac{k}{\omega^2}\)
\(\Rightarrow W_d=\dfrac{1}{2}mv^2=\dfrac{1}{2}.\dfrac{k}{\omega^2}.\omega^2\left(A^2-x^2\right)=\dfrac{1}{2}kA^2\left(1-\cos^2\left(2\pi t+\dfrac{2\pi}{3}\right)\right)\)
\(=\dfrac{1}{2}kA^2\left(1-\dfrac{\cos4\left(\pi t+\dfrac{2\pi}{3}\right)+1}{2}\right)=\dfrac{1}{4}kA^2\left[1-\cos4\left(\pi t+\dfrac{2\pi}{3}\right)\right]\)
Vậy động năng biến thiên tuần hoàn với chu kỳ là: \(T=\dfrac{2\pi}{4\pi}=\dfrac{1}{2}\left(s\right)\)
Nếu như ko sử dụng công thức ko thời gian, cậu có thể đạo hàm phương trình x ra, sẽ ra phương trình vận tốc và biến đổi là xong
\(v=x'=-\omega A\sin\left(\omega t+\varphi\right)=-2\pi.A\sin\left(2\pi t+\dfrac{2\pi}{3}\right)\)
Dạo này chả muốn làm Lý gì nên lười ghé box Lý lắm :( Cậu còn cần ko?