góc nội tiếp = (1/2)* góc ở tâm = góc tạo bởi tia tiếp tuyến và dây cung
(cùng chắn 1 cung)
góc nội tiếp = (1/2)* góc ở tâm = góc tạo bởi tia tiếp tuyến và dây cung
(cùng chắn 1 cung)
Câu 6. Cho biết ACB là góc nội tiếp chắn cung AB; BAx là góc tạo bởi một tia tiếp tuyến và một dây cung cùng chắn cung AB của đường tròn (O); biết ACB=80° thì BAx=
Cho (O) R=4cm , tiếp tuyến Bx ( x là tiếp điểm) vẽ dây BC sao cho góc xBC = 30 đô tính dien tích hình quat tạo bởi 2 bán kinh OB ,OC và cung nhỏ BC
Dạ mọi người giúp em bài này với ạ. Em cảm ơn ạ
cho góc xDy = a. lấy điểm A thuộc tia Dx. Một đường tròn (O) tiếp xúc tia Dx tại A và cắt Dy tại B và C. I là tâm đường tròn nội tiếp tam giác ABC. TÍnh góc IAD theo a
Cho (O) có dây AB. Bán kính OM vuông góc với AB ( M thuộc cung nhỏ AB ). Tiếp tuyến tại A của (O) cắt tia OM tại C. Chứng minh AM là tia phân giác của góc BAC
Cho dây AB của đường tròn (O;R). Các tiếp tuyến tại A và B của (O) cắt nhau tại C. Nối tâm O với điểm H thuộc dây AB và kẻ qua H đường thẳng vuông góc với OH, đường này cắt CA ở E và CB ở D.
a) Chứng minh: OBCA nội tiếp
b) Chứng minh: OA.OD=OB.OEc
) Cho AB=R Tính diện tích phần mặt phẳng giới hạn bởi BC, AC và cung nhỏ AB theo R
giúp em với ạ :(((
cho tam giác abc (ab<ac ) nội tiếp đường tròn tâm o , đường cao ah , ah cắt đường tròn ở d , ao cắt đường tròn ở e. chứng minh góc bah = góc oac , tứ giác bced là hình gì ?
ai giúp mình với ạ
Bài 1: Cho đường tròn (O;R) và điểm M nằm ngoài đtròn đó. Kẻ hai tiếp tuyến MA, MB với đtròn đó (A,B là các tiếp điểm) , MO cắt cung nhỏ AB tại N.
a) tính góc AON và số đo cung ANB, biết OM=2R
b) Biết góc AMB=36 độ . Tính số đo góc AOB
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp
Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?