Bài 4: Đường tiệm cận

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Huy Hoàng

Mọi người ơi cho mình hỏi bài này với ạ

1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là

2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)

Mình cảm ơn mọi người nhiều lắm !!!!!

Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:20

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

Nguyễn Việt Lâm
18 tháng 8 2021 lúc 22:27

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất


Các câu hỏi tương tự
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết