1. Cho hàm số \(y=\left|\dfrac{x^2+\left(m+2\right)x-m^2}{x+1}\right|\) . GTLN của hàm số trên đoạn \(\left[1;2\right]\)
có GTNN bằng
2.Tìm tham số thực \(m\) để phương trình
\(\left(4m-3\right)\sqrt{x+3}+\left(3m-4\right)\sqrt{1-x}+m-1=0\) có nghiệm thực
3.Tìm \(m\) để \(x^2+\left(m+2\right)x+4=\left(m-1\right)\sqrt{x^3+4x}\) , (*) có nghiệm thực
4.Cho hàm số \(y=f\left(x\right)\) liên tục và có đạo hàm \(f'\left(x\right)=\left(x+2\right)\left(x^2-9\right)\left(x^4-16\right)\) trên \(R\) . Hàm số đồng biến trên thuộc khoảng nào trên các khoảng sau đây
\(A.\left(1-\sqrt{3};1+\sqrt{3}\right)\)
B.(\(3;\)+∞)
\(C.\)(1;+∞)
D.\(\left(-1;3\right)\)
1 tìm họ nguyên hàm của hàm số f(x) \(3^x+\frac{1}{x^2}\)
2 Cho lăng trụ đứng ABC.\(A^,B^,C^,\) có đáy ABC là tam giác đều cạnh a, cạnh bên \(A^,B\) tạo với đáy một góc \(45^0\) . Thể tích khối lăng trụ ABC\(A^,B^,C^,\)
3 tỔNG số tiệm cận đứng và ngang của đồ thị hàm số \(y=\frac{\sqrt{x^2-4}}{x^2-5x+6}\) là
4 Tìm số thực x,y thỏa mãn (1-2i)x+(1+2y)i=1+i là
5 trong ko gian với hệ tọa độ OXYZ cho tam giác ABC vơi A(1;1;1),B(-1;1;0),C(1;3;2). đướng trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vecto \(\overline{a}\) nào dưới đây là một vecto chi phương
6 cho cấp số cộng (un) có số hạng đầu u1=2 và u3=6. cOng sai của cấp số đã cho bằng
7 cắt khối trụ bởi một mp chứa trục ta dc một thiết diện là hình vuông có diện tích bằng 4. Thể tích khối trụ đó bằng
8 Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với (ABC) =a . Tang của góc giữa 2 mp (SBC) và (ABC) bằng
1 tập xác định của hàm số y=\(\left(x+3\right)^{-2}\) là
2 kết quả của tích phân I= \(\int_0^2\) \(x^{2020}\) dx là
3 cho khối chóp có tứ giác có đấy là hình vuông cạnh bằng 2, và chiều cao h =3. Tính thể tích của khối chóp đã cho
4 cho a là số thực dương khác 1. Tính I=\(3log_a\sqrt[3]{a}\)
A I=1 B I=9 C I=\(\frac{1}{9}\) D I= \(\frac{1}{3}\)
5 cho hình trụ có độ dài đường sinh l và bán kính r. Nếu độ dài đường sinh khối trụ tăng lên 3 lần, diện tích đấy k đổi thì thể tích khối trụ sẽ tăng lên
A 3 lần B \(\frac{1}{3}\) lần C 9 lần D 27 lần
6 Tọa độ giao điểm hai đường tiệm cận của đồ thị hàm số y= \(\frac{x-2}{x+1}\) là
A I(1;1) B I(-1;1) C I(1;-1) D I(-1;-1)
7 tập nghiệm của bất phương trình \(log_4\left(x^2+2x-3\right)< \frac{1}{2}\) là
A \(\left(-\infty;-3\right)\cup\left(1;+\infty\right)\) B \(\left(-1-\sqrt{6};-3\right)\cup\left(1;-1+\sqrt{6}\right)\) C [-3;1] D (-3;1)
8 giả sử \(\int_0^9\) f(x) dx=37 và \(\int_9^0\) g(x) . Khi đó i=\(\int_0^9\) [2f(x)+3g(x)] dx bằng
9 cho số phức z=\(\frac{1}{3-4i}\) . số phức liên hợp của z là
10 cho hai số phức z1=1+5i và z2=3-2i . Trên mặt phẳng tọa độ, điểm biểu diễn của số phức \(\overline{z}+iz_2\) là điểm nào dưới đấy
A. P(-1;-2) B.N(3;8) C.P(3;2) D Q(3;-2)
11 Trong ko gian oxyz , cho đường thẳng d : \(\frac{x +1}{1}=\frac{y-2}{3}=\frac{z}{-2}\) đi qua điểm M(0;5;m) . Gía trị của m là
A . m=0 B.m=-2 C.m=2 D.m=-1
12 Cho lăng trụ đúng ABC.\(A^,B^,C^,\) có đáy \(\Delta\) ABC vuông cân tại B ,AC =\(2\sqrt{2a}\) .Góc giữa đường thẳng \(A^,B\) và mặt phẳng (ABC) bằng \(60^0\) . Tính độ dài cạnh bên của hình lăng trụ
Trong không gian Oxyz, cho hai đường thẳng d1: \(\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z}{2}\)và d2: \(\dfrac{x-1}{1}=\dfrac{y-3}{2}=\dfrac{z-4}{3}\) và mp (P): 2x+2y+2z-5=0. Điểm M(a;b;c) thuộc mp (P) sao cho tổng khoảng cách từ M đến hai đường thẳng d1 và d2 đạt min. Tính a + 2b +c.
rút gọn biểu thức
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
b) \(\left(3-\dfrac{\sqrt{2}+2}{\sqrt{2}+1}\right)\left(3+\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\right)\)
giúp hộ mình vs
Cho một tấm tôn hình chữ nhật ABCD có AD=60cm. Ta gập tấm tôn theo 2 cạnh MN và QP vào phía trong sao cho BA trùng với CD để được lăng trụ đứng khuyết 2 đáy . Khối lăng trụ có thể tích lớn nhất khi x bằng bao nhiêu?
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \(\dfrac{x+\sqrt{x^2+1}}{x+1}\)
1 nếu \(\int_0^2\) f(x)dx=-10 thì \(\int_0^2f\left(2x\right)dx\) bằng
2 cho số phức z thỏa z+\(\)\(z+3\overline{z}=8+14i\). Phần ảo của số phức đã cho bằng
3 diện tích hình phẳng giói hạn bỏi các đường y =lnx, y=0, x=\(\frac{1}{e}\) và x=e
4 biết \(\int_0^{\frac{\pi}{3}}f\left(x\right)=4\) , giá trị của \(\int_0^{\frac{\pi}{3}}\left[f\left(x\right)+2sinx\right]dx\)
5 cho hai số thực x và y thỏa mãn (4x+y)+(y-x)i=(x+2y-6)+(3x-1)i với i là đơn vị ảo . Gía trị của 6x-y bằng
6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{x+2}{x+1}\) trên khoảng (-1,\(+\infty\)) là
7 trong ko gian Oxyz, cho hai điểm M (-3;1;2) và N (1;3;-3) , mat95 phẳng vuông góc với MN tại điểm M có pt là
8 cho hình nón có chiều cao bằng \(a\sqrt{6}\) và thiết diện đi qua trục của khối nón đó là tam giác đều, thể tích khối nón bằng
9 cho số phức z thỏa mãn 2(\(\overline{z}\) +i)+(2+i)z=6+5i. Mô đun của số phức z bằng
10 trong ko gian Oxyz, cho \(\overline{a}\left(2;3;-1\right),\overline{b}\left(-1;0;2\right)\) . Tính \(\overrightarrow{a}\left(\overrightarrow{a}+\overrightarrow{b}\right)\)
11 họ tất cả các nguyên hàm của hàm số f(x) =x^4 -3e^x là
12 cho hình chóp tứ giác đều có tất cả các cạnh bằng 2a. Diện tích mặt cầu ngoại tiếp hình chóp đã cho bằng
13 cho hàm số f(x) liên tục trên R , biết e^X là một nguyên hàm của hàm số \(f\left(x\right)e^{-x}\) . Họ tất cả các nguyên hàm của hàm số x.\(f^,\left(x\right)là\)
14 biết\(\int\frac{dx}{e^x+e^{-x}+2}\) =\(a\left(e^x+1\right)^b+C\) với a,b,c \(\in Z\) . Tính S=2a-3b
15 họ tất cả các nguyên hàm của ham số y =6xlnx trên khoảng \(\left(0;+\infty\right)\) là
16 cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ bởi một mặt phẳng song song với trục và cách trục một khoảng 2a, thiết diện thu dc là một hình vuông. Thể tích khối trụ dc giới hạn bởi hình trụ đã cho bằng
17 trong ko gian oxyz, cho điểm M (1;-3;2) và mặt phang73 (P) :x-3y-2z+5=0 , biết mặt phẳng (Q) :ax-2y+bz-7=0 đi qua M và vuông góc (P) , giá trị của 3a+2b bằng
18 cho hình nón có bán kính bằng \(a\sqrt{3}\) và chiêu cao a. Một mp thay đổi qa đỉnh nón và cắt hình nón theo thiết diện là tam giác cân. Tính diện tích lớn nhất tam giác cân đó
Câu 1:Gọi (P) là mp đi qua M(3;-1;-5) và vuông góc với hai mp (Q):3x-2y+2z+7=0 và (R):5x-4y+3z+1=0
A.2x+y-2z+15=0 B.2x+y-2z-15=0 C.x+y+z-7=0 D.x+2y+3z+2=0
Câu 2:Tồn tại bao nhiêu mp (P) vuông góc với 2 mp (\(\alpha\)):x+y+z+1=0,(\(\beta\)):2x-y+3z-4=0 sao cho khoảng cách từ gốc tọa độ đến mp (P) bằng \(\sqrt{26}\)
A.0 B.2 C.1 D.vô số
Câu 3: Trong Oxyz cho A(3; 4; -1),B(2;0;3),C(-3;5;4).Diện tích tam giác ABC là:
A.7 B.\(\dfrac{\sqrt{1562}}{2}\) C.\(\dfrac{\sqrt{379}}{2}\) D.\(\dfrac{\sqrt{29}}{2}\)
Câu 4:Cho hai đt (d1):\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)và (d2)\(\dfrac{x-3}{4}=\dfrac{y-5}{6}=\dfrac{z-7}{8}\).Mệnh đề nào dưới đây đúng?
A.(d1)\(\perp\)(d2) B.(d1)\(\equiv\)(d2) C.(d1)//(d2) D.(d1) và (d2) chéo nhau