Ta có bất đẳng thức: \(ab+bc+ca\le a^2+b^2+c^2;\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\).
Đẳng thức xảy ra khi và chỉ khi a = b = c.
Kết hợp với \(a^2+b^2+c^2=3\) ta có \(a+b+c+ab+bc+ca\le6\).
Mặt khác theo bài ra ta có đẳng thức xảy ra, do đó ta phải có: \(\left\{{}\begin{matrix}a=b=c\\a^2+b^2+c^2=3\\a+b+c\ge0\end{matrix}\right.\Leftrightarrow a=b=c=1\).
Thay vào A ta tính được \(A=1\).