d) \(24^4:3^4-32^{12}:16^{12}\)
\(=\left(24:3\right)^4-\left(32:16\right)^{12}\)
\(=8^4-2^{12}\)
\(=\left(2^3\right)^4-2^{12}\)
\(=2^{12}-2^{12}\)
\(=0\)
h: \(\dfrac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=\dfrac{11\cdot3^{29}-3^{30}}{4\cdot3^{28}}=\dfrac{3^{29}\cdot8}{4\cdot3^{28}}=3\cdot2=6\)