\(M=\dfrac{a}{\sqrt{a^2-b^2}}+\dfrac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\cdot\dfrac{a-\sqrt{a^2-b^2}}{b}\)
\(=\dfrac{a}{\sqrt{a^2-b^2}}+\dfrac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(=\dfrac{a+b}{\sqrt{a^2-b^2}}=\dfrac{\sqrt{a+b}}{\sqrt{a-b}}\)
Để M<1 thì (a+b)/(a-b)<1
=>(a+b-a+b)/(a-b)<0
=>2b/(a-b)<0
=>0<a<b