\(\lim\limits_{x\rightarrow+\infty}\frac{1+2x-3x^2}{x^3+3x-5}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{x^3}+\frac{2}{x^2}-\frac{3}{x}}{1+\frac{3}{x^2}-\frac{5}{x^3}}=\frac{0}{1}=0\)
\(\lim\limits_{x\rightarrow+\infty}\frac{1+2x-3x^2}{x^3+3x-5}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{x^3}+\frac{2}{x^2}-\frac{3}{x}}{1+\frac{3}{x^2}-\frac{5}{x^3}}=\frac{0}{1}=0\)
Tính: \(\lim\limits_{x\rightarrow1}\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}-\frac{7}{4}x-\frac{5}{4}}{x^2-2x+1}\)
\\(\\lim\\limits_{x\\rightarrow-\\infty}\\left(2x^3-x^2+3x-5\\right)\\)
\n\n\\(\\lim\\limits_{x\\rightarrow2}\\frac{3}{\\left(x-2\\right)\\left(x^2-3x+2\\right)}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow0}\\frac{x^2-5}{x^5+x^4}\\)
\n\(\lim\limits_{x\rightarrow4}\frac{2x-\sqrt{3x+1}}{x^2-1}\)
\(\lim\limits_{x\rightarrow8}\frac{\sqrt[3]{x}-\sqrt{x-4}}{x-8}\)
\(\lim\limits_{x\rightarrow0}\frac{\sqrt{2x+1}-\sqrt[3]{3x+1}}{x^2}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+3}{3x-1}=\dfrac{1}{3}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
tính
\(\lim\limits_{x\rightarrow1}\frac{\sqrt{2x-1}+x^2-3x+1}{\sqrt[3]{x-2}+x^2-x+1}\)
đ13b3c3
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+2x}+3x}{\sqrt{4x^2+1}-x+3}\)
tìm giới hạn
\(\lim\limits_{x\rightarrow-\infty}\frac{x^2-3x-2}{x^3+2x+1}\)
đ11b1c3
tìm giới hạn
\(\lim\limits_{x\rightarrow+\infty}\frac{3x\left(2x-1\right)\left(2-3x\right)}{\left(3x-1\right)^3}\)